Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications.
Cadmium sulfide can be prepared by the precipitation from soluble cadmium(II) salts with sulfide ion and this has been used in the past for gravimetric analysis and qualitative inorganic analysis.
Pigment production usually involves the precipitation of CdS, the washing of the precipitate to remove soluble cadmium salts followed by calcination (roasting) to convert it to the hexagonal form followed by milling to produce a powder. When cadmium sulfide selenides are required the CdSe is co-precipitated with CdS and the cadmium sulfoselenide is created during the calcination step.
Properties
Cadmium sulfide has, like zinc sulfide, two crystal forms; the more stable hexagonal wurtzite structure (found in the mineral Greenockite) and the cubic zinc blende structure (found in the mineral Hawleyite). In both of these forms the cadmium and sulfur atoms are four coordinate. There is also a high pressure form with the NaCl rock salt structure.
Cadmium sulfide is a direct band gap semiconductor. The magnitude of its band gap means that it appears coloured.
As well as this obvious property others properties result:
the conductivity increases when irradiated with light(leading to uses as a photoresistor)
when combined with a p-type semiconductor it forms the core component of a photovoltaic (solar) cell and a CdS/Cu2S solar cell was one of the first efficient cells to be reported (1954)
when doped with for example Cu+ ("activator") and Al3+ ("coactivator") CdS luminesces under electron beam excitation (cathodoluminescence) and is used as phosphor
both polymorphs are piezoelectric and the hexagonal is also pyroelectric
electroluminescence
CdS crystal can act as a solid state laser
Applications
CdS is mainly used as a pigment.
CdS and cadmium selenide are used in manufacturing of photoresistors (light dependent resistors) sensitive to visible and near infrared light.
In thin-film form, CdS can be combined with other layers for use in certain types of solar cells. CdS was also one of the first semiconductor materials to be used for thin-film transistors (TFTs). However interest in compound semiconductors for TFTs largely waned after the emergence of amorphous silicon technology in the late 1970s.
Pigment
Cadmium sulfide is known as cadmium yellow (CI pigment yellow 37). By adding varying amounts of selenium as selenide, it is possible to obtain a range of colors, for example CI pigment orange 20 and CI pigment red 108.
Synthetic cadmium pigments based on cadmium sulfide are valued for their good thermal stability, light and weather fastness, chemical resistance and high opacity. The general commercial availability of cadmium sulfide from the 1840s led to its adoption by artists, notably Van Gogh, Monet (in his London series and other works) and Matisse (Bathers by a river 1916–1919). The presence of cadmium in paints has been used to detect forgeries in paintings alleged to have been produced prior to the 19th century. CdS is used as pigment in plastics
More about: Cadmium sulfide sale
Read more: Cobalt oxide
No comments:
Post a Comment